翻訳と辞書
Words near each other
・ Artington
・ Artinian
・ Artinian ideal
・ Artinian module
・ Artinian ring
・ Artinite
・ Artins
・ ArtInsights
・ Artinskian
・ Artinsky District
・ Artin–Hasse exponential
・ Artin–Mazur zeta function
・ Artin–Rees lemma
・ Artin–Schreier curve
・ Artin–Schreier theory
Artin–Tate lemma
・ Artin–Verdier duality
・ Artin–Wedderburn theorem
・ Artin–Zorn theorem
・ Artio
・ Artio Films
・ Artiocetus
・ Artiom Gaiduchevici
・ Artiom Haceaturov
・ Artiom Kiouregkian
・ Artion Poçi
・ Artiora
・ ArtiosCAD
・ Artipe
・ Artipelag


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Artin–Tate lemma : ウィキペディア英語版
Artin–Tate lemma
In algebra, the Artin–Tate lemma states:
:Let ''A'' be a Noetherian ring and B \sub C algebras over ''A''. If ''C'' is of finite type over ''A'' and if ''C'' is finite over ''B'', then ''B'' is of finite type over ''A''.
(Here, "of finite type" means "finitely generated algebra" and "finite" means "finitely generated module".) The lemma was introduced by E. Artin and J. Tate in 1951〔E Artin, J.T Tate, "A note on finite ring extensions," J. Math. Soc Japan, Volume 3, 1951, pp. 74–77〕 to give a proof of Hilbert's Nullstellensatz.
== Proof ==

The following proof can be found in Atiyah–MacDonald. Let x_1, ..., x_m generate C as an A-algebra and let y_1, ..., y_n generate C as a B-module. Then we can write x_i = \sum_j b_y_j and y_iy_j = \sum_b_y_k with b_,b_ \in B. Then C is finite over the A-algebra B_0 generated by the b_,b_. Using that A and hence B_0 is Noetherian, also B is finite over B_0. Since B_0 is a finitely generated A-algebra, also B is a finitely genrated A-algebra.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Artin–Tate lemma」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.